

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION **MATHEMATICS**

CLASS: XII

Sub. Code: 041

Time Allotted: 3 Hrs

22.09.2019

Max. Marks: 80

General	Instructions:
---------	----------------------

All questions are compulsory. (i)

This question paper contains 36 questions. (ii)

Questions 1-20 in Section A are MCQ/Very short-answer type questions carrying 1 mark each. (iii)

Questions 21-26 in Section B are short-answer type questions carrying 2 marks each. (iv)

Questions 27-32 in Section C are long-answer-I type questions carrying 4 marks each. (v)

Questions 33-36 in Section D are long-answer-II type questions carrying 6 marks each. (vi)

SECTION A

1.	Find the area bounded by the curve $y = \cos x$, between $x = 0$ and $x = \pi$.	1
2.	Evaluate: $\int log(x^2) dx$	1
3.	Find the value of	-
	$\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(\frac{1}{2}\right)$	1
4.	If f,g: $R \to R$ be two functions defined as $f(x) = x + x$ and $g(x) = x - x$, for all x in R, find fog(-5).	1
5.	Find the value of $\cos^{-1}\cos\left(\frac{4\pi}{3}\right)$.	1
6	Evaluate: $\int_{-1}^{1} [x] dx$	1
7.	Evaluate: $\int \frac{1+\cos 2x}{1-\cos 2x} dx$	1
8.	Evaluate: $\int_0^{2\pi} \sin x dx$	1
9.	Find the area bounded by the lines $y = x$ and $x = 2$ in the first quadrant.	1
10.	A point C in the domain of a function f at which either $f'(c) = 0$ or f is not differentiable is called	1
11.	The line $y = x + 1$ is a tangent to the curve $y^2 = 4x$ at the point	1
	a) $(1,2)$ b) $(2,1)$ c) $(1,-2)$ d) $(-1,2)$	1

12.	$f(x) = \begin{cases} xSin \frac{1}{x}, x \neq 0 \\ k, x = 0 \end{cases}$ is continuous at $x = 0$. Find k.	en en al casa en
	(k , $x = 0$ a) 8 b) 1 c) -1	1
13.	If $y = x + e^x$, then $\frac{d^2x}{dy^2} =$	1
	c) $\frac{1}{(1+e^x)^3}$ d) e^x	1
14.	Let R be the relation in the set N given by $R = \{(a, b): a = b - 2, b > 6\}$. Choose the correct	
	answer. a) $(2,4) \in R$ b) $(3,8) \in R$ c) $(6,8) \in R$ d) $(8,7) \in R$	
15	(2,1) $(3,1)$ $(3,1)$ $(3,1)$ $(4,1$	1
15.	$a = \frac{1}{2}$	
	a) 2	1
16.	The interval in which $y = x^2 e^{-x}$ is increasing is a) $(-\infty, \infty)$ b) $(-2, 0)$ c) $(2, \infty)$ d) $(0, 2)$	
17.	$r_{x} = r_{y}$ D to defined as $f(x) = r^{4}$. Choose the correct answer.	1
17.	a) F is one- one onto b) f is many-one onto	
	c) f is one-one but not onto d) f is neither one-one nor onto.	1
18	Choose the correct principal value branch of the range of $y = \tan^{-1} x$.	
	$a)\left[-\frac{\pi}{2},\frac{\pi}{2}\right] \qquad b)\left(-\frac{\pi}{2},\frac{\pi}{2}\right) \qquad c)\left[0,\pi\right] \qquad d)\left(0,\pi\right)$	1
19		_
	a) 0 3 3 4 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2	1
20	6. Find the derivative of $Sin(x)$ with respective a a a b $cot(x^3)$ b c $cot(x^3)$ d d $tan(x^3)$	
	SECTION B	
. 2	Find $\int_{1}^{4} f(x)dx$, $if(x) = \begin{cases} 7x & \text{if } 1 \le x \le 3 \\ 8 & \text{if } i \le x \le 4 \end{cases}$ OR	2
	Evaluate: $\int \frac{5^{(7x-5)}}{5^{(2x+10)}} dx$	2
	22. Find the value of k, if the following function is continuous at 1	2
	$f(x) = \begin{cases} k(x^2 - 2), & x \le 1 \\ 4x + 1, & x > 1 \end{cases}$	2
	23. Find $\frac{dy}{dx}$ if, $y = \sin^{-1}(\frac{1-x^2}{1+x^2})$ 0 <x<1< td=""><td>2</td></x<1<>	2
	24. Prove that $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{2}{11}\right) = \tan^{-1}\left(\frac{3}{4}\right)$	2
	OR	

Evaluate: $sin\left(\frac{1}{2}cos^{-1}\frac{4}{5}\right)$

The total cost c(x) associated with the production of x units of an item is given by 25.

2

 $C(x) = 0.007x^3 - 0.003x^2 + 15x + 4000$. Find the marginal cost when 17 units are produced.

2

Evaluate: $\int \sqrt{\frac{a+x}{a-x}} - \sqrt{\frac{a-x}{a+x}} dx$

SECTION C

Find $\frac{dy}{dx}$, $y = (cosx)^{sinx} + (logx)^x$ 27.

4

28. $f: \mathbf{N} \to \mathbf{N}$ be defined by

26.

4

 $f(x) = \begin{cases} x + 1, & \text{if } x \text{ is odd} \\ x - 1, & \text{if } x \text{ is even} \end{cases}$ for all $x \in \mathbb{N}$, show that f is bijective.

Find the intervals in which the functions given below are strictly decreasing or strictly increasing:-29.

$$f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$$

4

OR

Find the equations of the tangent and normal to the curve $y = \frac{x-7}{(x-2)(x-3)}$ at the point, where it cuts x-axis.

30. Evaluate: $\int \frac{x+3}{x^2-2} \, dx$

4

4

If $f(x) = \begin{cases} x^2 + 3x + a, & x \le 1 \\ bx + 2, & x > 1 \end{cases}$, is differentiable. Find a and b. 31.

OR

If $f(x) = \begin{cases} \frac{1-\sin^3 x}{3\cos^2 x}, & x < \frac{\pi}{2} \\ a, & x = \frac{\pi}{2} \\ \frac{b(1-\sin x)}{(\pi - 2x)^2}, & x > \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$, find a and b.

32.

Simplify: $\tan^{-1} \left[\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right]$

4

SECTION D

Show that the right circular cone of least curved surface and given volume has an altitude equal to 6 33. $\sqrt{2}$ times the radius of the base.

34. Find the area of the region enclosed between the two circles $x^2 + y^2 = 4$ and

 $(x-2)^2 + y^2 = 4$

OR

Using integration find the area of region bounded by the triangle whose vertices are (1,0),(2,2) and (3,1).

35. Evaluate: $\int_0^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 16 \sin 2x} dx$

36. Let $f: \mathbb{N} \to \mathbb{R}$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: \mathbb{N} \to S$, where S is the range of f is invertible. Find the inverse of f.

OR

Show that the relation R in the set N of Natural numbers given by

 $R = \{(a, b): |a - b| \text{ is a multiple of } 3\}$ is an equivalence relation.

End of the Question Paper